Noninvasive photoacoustic angiography of animal brains in vivo with near-infrared light and an optical contrast agent.

نویسندگان

  • Xueding Wang
  • Geng Ku
  • Malgorzata A Wegiel
  • Darryl J Bornhop
  • George Stoica
  • Lihong V Wang
چکیده

Optical contrast agents have been widely applied to enhance the sensitivity and specificity of optical imaging with near-infrared (NIR) light. However, because of the overwhelming scattering of light in biological tissues, the spatial resolution of traditional optical imaging degrades drastically as the imaging depth increases. Here, for the first time to our knowledge, we present noninvasive photoacoustic angiography of animal brains in vivo with NIR light and an optical contrast agent. When indocyanine green polyethylene glycol, a novel absorption dye with prolonged clearance, is injected into the circulatory system of a rat, it obviously enhances the absorption contrast between the blood vessels and the background tissues. Because NIR light can penetrate deep into the brain tissues through the skin and skull, we are able to successfully reconstruct the vascular distribution in the rat brain from the photoacoustic signals. On the basis of differential optical absorption with and without contrast enhancement, a photoacoustic angiograph of a rat brain is acquired that matches the anatomical photograph well and exhibits high spatial resolution and a much-reduced background. This new technology demonstrates the potential for dynamic and molecular biomedical imaging.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Near-infrared optical-resolution photoacoustic microscopy.

Compared with visible light (380-700 nm), near-infrared light (700-1400 nm) undergoes weaker optical attenuation in biological tissue; thus, it can penetrate deeper. Herein, we demonstrate near-infrared optical-resolution photoacoustic microscopy (NIR-OR-PAM) with 1046 nm illumination. A penetration depth of 3.2 mm was achieved in chicken breast tissue ex vivo using optical fluence within the A...

متن کامل

Simultaneous Molecular and Hypoxia Imaging of Brain Tumors In Vivo Using Spectroscopic Photoacoustic Tomography

| Noninvasive molecular and functional imaging in vivo is promising for detecting and monitoring various physiological conditions in animals and ultimately humans. To this end, we present a novel noninvasive technology, spectroscopic photoacoustic tomography (SPAT), which offers both strong optical absorption contrast and high ultrasonic spatial resolution. Optical contrast allows spectroscopic...

متن کامل

Near-Infrared Fluorescent Nanoprobes for in Vivo Optical Imaging

Near-infrared (NIR) fluorescent probes offer advantages of high photon penetration, reduced light scattering and minimal autofluorescence from living tissues, rendering them valuable for noninvasive mapping of molecular events, assessment of therapeutic efficacy, and monitoring of disease progression in animal models. This review provides an overview of the recent development of the design and ...

متن کامل

Photoacoustic tomography of a rat cerebral cortex in vivo with au nanocages as an optical contrast agent.

Poly(ethylene glycol)-coated Au nanocages have been evaluated as a potential near-infrared (NIR) contrast agent for photoacoustic tomography (PAT). Previously, Au nanoshells were found to be an effective NIR contrast agent for PAT; however, Au nanocages with their more compact sizes (<50 nm compared to >100 nm for Au nanoshells) and larger optical absorption cross sections should be better suit...

متن کامل

Multicontrast photoacoustic in vivo imaging using near-infrared fluorescent proteins

Non-invasive imaging of biological processes in vivo is invaluable in advancing biology. Photoacoustic tomography is a scalable imaging technique that provides higher resolution at greater depths in tissue than achievable by purely optical methods. Here we report the application of two spectrally distinct near-infrared fluorescent proteins, iRFP670 and iRFP720, engineered from bacterial phytoch...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Optics letters

دوره 29 7  شماره 

صفحات  -

تاریخ انتشار 2004